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Abstract. The use of an unstructured computational grid in computational aerohydrodynamics 

is associated with a number of difficulties: the non-conservativeness of the momentum balance 

equation, the manifestation of nonphysical grid effects, a decrease in the time step for the 

Courant-Friedrichs-Levy condition, and the complexity of modeling a dynamic grid. Of course, 

these difficulties are solvable, however, they require complex logic of mathematical 

algorithms, which leads to an increase in the requirements for the resource of the software 

product. Therefore, the author cultivates a low-resource method for calculating currents on 

coarse calculated Cartesian grids. This method has the same logic for the entire computational 

domain, but it requires solving the problem of flow turning in places with complex geometry. 

To calculate flows on rough Cartesian computational grids, the method of isentropic rotation of 

the flow in cells adjacent to the surface is proposed. The structure of the computational domain 

with masks of the guiding properties and the adjacent layer is described. The algorithm of 

isentropic rotation of the flow using the method of features is given. An algorithm is described 

for the effect of the wall on the intensity of the features involved in the rotation of the flow. 

1.  Introduction 

Most of the problems of computational fluid dynamics are related to the study of objects of complex 

geometry. To simulate the flow around such objects, adaptive irregular meshes are often used [1, 2]. 

However, such grids require the involvement of complex logic of computational algorithms and 

increased computer performance. Therefore, rectangular grids [3-5] look more attractive, which do not 

require bulky arrays of nodes and are compatible with the capabilities of ordinary computers. A 

universal method for constructing solutions on coarse regular grids is the singularity method [6, 7]. To 

set the localization of these features and describe their “power”, the so-called “gas-dynamic mask” can 

be used. 

2.  Methods 

The method was tested in the author’s software package for modeling the unsteady flow of a viscous 

compressible gas. The package was developed in Fortran 90 and contains a mask generator, 

calculation module and graphical interface. The mask generator includes a graphic module for 2D 

layering and editing of the results of creating masks (Fig. 1). To obtain the geometry of the object of 



 

 

 

 

 

 

study, a 3D model in the STL format is used, which can be obtained in any third-party CAD 

application. 

The process of motion of a viscous heat-conducting medium is displayed by the matrix of states of 

physical fields     txwptxП ,,,,


  (where,  321 ,, xxxx 


 – coordinate vector;  321 ,, wwww 


 – 

velocity vector), defined by the conservative form of writing the system of equations of gas dynamics: 

 

 

























 FS M

n

n

n

M

n t

F

t

F

11

,    (1) 

where, 











0,,,1  wSF  is generalized stream vector matrices; 
k

k
x

i







 is Hamilton operator; 







3

1k

kki  is vector-matrix of convective and wave processes; 

 kkkkkk wpwF ,,,,0,0 ,3,2,1   is projections of the vector matrix of convective and wave 
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   

 n

o

n

t
f

t

S


















 
,,,0  is vector-matrix of “free” sources-

sinks;  321 ,, ffff 


 is vector of intensity of the field of mass forces; 
SM  is the total number of 

sources-sinks groups due to the substantial transfer; 
FM  is the total number of groups of “free” 

sources-sinks. 

The solution of the system of equations describing gas-dynamic flows is performed using the finite-

difference method modified for boundary nodes by S K Godunov [8]. To determine the fluxes between 

internal cells, the solution of the problem of the decay of an arbitrary discontinuity is used. Near solid 

walls, the problem of the interaction of a gas flow with an obstacle is solved. At the boundary nodes of 

the computational domain, a solution of the form of a Riemannian rarefaction wave is used. 

Various factors perturbing the main flow are modeled by the method of features of the type of 

sources-sinks associated with mass transfer and free. The qualitative composition of sources and sinks 

and the corresponding mathematical representations are given in table. As a one-parameter model of 

turbulence, the approximation viscosity standardization method is used [9]. For this, the entropy 

transfer equation has been added to the system. In addition, viscous friction forces are modeled by 

adding to the right sides of the momentum equations the components of the strain rate tensor in the 

form of a perturbation of the main solution. 

 

Table. “Element base” of the model 

Intensities of generating factors (components) Record form Mechanism of action (transfer) 

Source of mass  

t

 1
 

 

substantial 

Frictional forces   

t

S



 2
 

 

 

 

free 
Normal tensions  3I  

Tensions of surface forces  4I  
Inertia tensions  5I  
Energy source (heat supply)   

t

o



 6
 

 

substantial 

 



 

 

 

 

 

 

 
Figure 1. Display of the structure of the computational domain in the mask generator:  

▬ – boundaries of the computational domain; ▬ – computational cell boundaries; ▬ – surface mask;  

▬/▬/▬ – guide cosine mask; ■ – volume mask; ■ – computational cell;  

■ – features of the type sources-drains; ■, ■, ■ – adjoining layer mask. 

To describe the topology of the object of study in the computational domain on a regular 

rectangular grid, two types of masks are used: volume and surface. The volume mask is used to model 

solids that completely occupy the internal volume of the cell and therefore are excluded from the 

solution area. The surface mask is used to model thin-walled structural elements and serves to separate 

cells that do not communicate with each other. 

Modeling of smooth flow is carried out using two types of masks: guide cosines and the adjacent 

layer. The mask of guiding cosines contains an array of averaged normals to the curved solid-state 

surface of the original [10-12]. The mask of the adjacent layer shows the distance from the streamlined 

surface and sets the intensity of the influence of the cosine mask. 

In cells where the cosine mask is not zero (if mask_cosin(i, j, k) ≠ 0), an isentropic rotation of the 

flow is performed in the direction perpendicular to the averaged normal vector. The rotation of the 

flow is subject to the conservation of the kinetic energy of the flow in the cell before and after the 

rotation. For this, the angle α between the velocity vector w  and the tangent to the surface vector   

perpendicular to the averaged normal vector is determined n . Next, the vector w  is projected onto the 

vector  , and the main direction  of the flow is selected for the direction: 
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In addition, in the first adjacent layer (if mask_label (i, j, k, 1) = 1), the isoentropic approximation 

of the solution of the problem of the interaction of gas with an obstacle is also used. In subsequent 

layers, the influence of the mask of guiding cosines weakens, which is expressed by turning the flow 

not at the full angle α, but at its fraction r. The angle fraction is determined depending on the layer 

(l = 1...N, where, N is the number of layers) and is calculated by the Gaussian distribution, similar to 

the SPH method [13-15]: 
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where, l is layer number; b is wall influence coefficient (>10). 

Like SPH methods, the smoothing length is the thickness of the mask of the adjacent layer 

mask_label(i, j, k, l) and is calculated as hN (where h is the spatial integration step). In the case of 

using a movable mask, which moves along the OX axis with a velocity u, it is necessary to recalculate 

the internal energy, and then the temperature and pressure: 
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where, 0  is internal energy before the flow turns; 0

1w  is substantial velocity along the axis OX (in 

direction 1) before the flow turns. 

3.  Results 

To test the method, we simulated the flow around an infinite cylinder on a computational grid of 

100×40×1 with a Reynolds number of 112. In Fig. 2, in the form of color maps of physical fields, the 

phase of establishing the flow around the cylinder is displayed. When flowing around, a boundary 

layer is detached (at point C) with the formation of a stagnant zone in which two symmetric stationary 

vortices exist stably. 

This is shown in Fig. 3 diagram of streamlines. The use of masks in combination allows one to 

obtain the adhesion of the flow to the surface of the cylinder on a low-resource coarse mesh. Without 

using the proposed method, flow separation occurs much earlier (at point O) (see physical fields of 

concentration of fresh air charge). 

In Fig. 4 shows a plot of velocity vectors when flowing around a cylinder using a single-layer 

cosine mask. The plot shows the absence of a blow against the wall, despite the use of a fairly coarse 

mesh. The presence of a mask affects nearby cells and provides a smooth change in the direction of 

the velocity vectors around the surface of complex geometry. The cosine mask has the greatest 

influence on the flow pattern (Fig. 4) and quantitative parameters (Fig. 5) in the front of the cylinder, 

i. e., at the point where the flow hits the wall. 

In Fig. 5 shows the distribution of the components of the velocity vector over the upper and lower 

surfaces of the cylinder relative to the plane of symmetry. The graph shows a monotonic change in 

both components of the velocity vector when using the cosine mask (pos. 2). Thus, the proposed 

measures allow for a smooth flow around roughly approximated objects, and more accurately find 

their integral characteristics (for example, aerodynamic coefficients). 

 

 
Figure 2. Fields of physical parameters when flowing around an infinite cylinder at Re=112  

using a mask of guide cosines. 



 

 

 

 

 

 

 
Figure 3. Diagram of streamlines. 

 
Figure 4. Diagram of velocity vectors. 

 
Figure 5. Distribution of velocity components over the surface of the cylinder: 1 – using a mask of 

guide cosines, simulating the effect of the walls of the cylinder on the flow; 2 – without using a mask. 

 



 

 

 

 

 

 

4.  Conclusion 

The use of masks with special properties requires the development of specialized (for the applicable 

calculation package) grid generators, which is a separate non-trivial task. The use of the mask of 

guiding cosines together with the mask of the adjacent layer make it possible to obtain a physical 

picture of the flow around using a rough Cartesian regular grid. When the mesh thickens, the mask of 

the adjacent layer allows you to simulate the boundary layer, setting each cell with the parameters of 

the displacement thickness, loss of momentum and energy. 
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