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Abstract. Combined numerical and analytical determination of overall dynamic 

response and creep behavior of random multi-component reinforced elastomers are 

proposed. Magnetorheological elastomers are considered here as an example of smart 

materials, composed of micro-sized magnetic carbonyl iron particles dispersed in a non-

magnetic silicone rubber. The viscoelastic behavior of rubber matrix is described by 

Rabotnov’s type quasi-linear law. The random structure of composite analyzed, so 

constitutive equations for statistical fluctuations of first and second order displacement, 

nonlinear Green deformation, nominal or Cauchy stress in the representative volume are 

used. Upon application of the integral Laplace-Carson and Fourier transforms, the 

boundary value problem for the local stress and strain fields becomes similar to a 

nonlinear elastic one. The volume concentration of carbonyl iron remains unchanged 

after transforming from the time domain to the Laplace-Carson domain, as in the case of 

non-aged materials. The explicit determination of the inverse transform is not 

straightforward, and numerical methods are required. Efficient algorithms for 

numerically evaluating the inverse Laplace transform we use here from NAG-Fortran 

library. Numerical experiments by finite elements modelling were carried out with the 

aim of choosing the optimal structure and composition of multi-component 

magnetorheological elastomer materials. 

1.  Introduction 

The high-performance composite materials are widely used in aviation, especially over the last 

decades [1, 2]. The rather new type of this material is represented by reinforced elastomers [3-5]. The 

mechanical behavior of these materials is characterized by creep, change in strain over time at constant 

stress, relaxation of stress, change in stress over time at constant strain, damping of free vibrations, 

etc. Elastomers may have highly elastic deformations, which are characterized by a larger value in 

comparison with elastic deformations of solids. Moreover, highly elastic deformations are as 

reversible as elastic ones. The most important feature of elastomers is high deformability without 

fracture. 

Many elastomers are incompressible [6, 7]. The main relaxation properties are creep, stress 

relaxation, recovery or reverse creep. General deformation consists of two components - elastic and 

viscoelastic. Composites based on elastomeric matrix are used for effective vibration damping. The 



 

 

 

 

 

 

wide distribution of elastomeric materials is associated with their unique properties. Elastomeric parts 

increase the reliability and durability of structures, and reduce their material and energy consumption. 

Magnetorheological elastomers (MREs) are considered as smart composites [8, 9]. Such materials 

are composed of micro-sized magnetic particles dispersed in a non-magnetic elastomeric matrix. 

MREs have attracted great interest because their mechanical and rheological properties can be 

controlled by the application of an external magnetic field, due to magneto-rheological effect [10, 11]. 

These composites have been made from various types of matrix materials, such as silicone rubber and 

thermoplastic elastomers [4]. Micro-sized carbonyl iron particles are the most common type of fillers 

[5, 9]. 

Such materials inherit the main properties of the elastomeric matrix, such as large deformations, 

stress softening effect, amplitude and frequency dependency, reduction of stiffness at cyclic loading. 

So the dynamic mechanical properties of MREs are studied by the equations for viscoelastic materials. 

Fractional derivative viscoelastic models have been proposed in [6, 12] and used here to study the 

viscoelastic behavior of elastomers [13-15].  

Change in the properties of MREs under the application of an external magnetic field is most 

extensively studied in recent years. A Rabotnov’s four-parameter fractional derivative model was 

applied to simulate the viscoelastic behavior of the isotropic materials in [12-17]. The dependence of 

dynamic moduli and loss factor on the frequency and magnetic flux density was numerically 

calculated using this model [13, 18].  

2.  Materials and Methods  

Viscoelastic models based on fractional derivatives include fractional derivative terms, added to 

viscous terms and elastic terms. It can be used in both the time and frequency domain [6, 7]. Methods 

of rheological parameters determination presented in [12, 16]. The constitutive equation for the four-

parameter fractional derivative model in the time domain may be written as follows [7, 13]: 
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where   is stress, e  is deformation, r  is the static, relaxed, elastic shear modulus, e r v     is 

the high frequency limit value of the dynamic modulus,   is the relaxation time, and m  is the 

fractional parameter with value varying between 0 and 1 [7, 15]. 

Representing the model in the frequency domain is more useful and much easier than that in the 

time domain [1, 3]. Therefore, equation (1) is represented in the frequency domain using Fourier 

transform as follows: 
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Parameters of the fractional derivative model for isotropic MREs under different flux densities are 

fitted in [4, 5] 0.368r MPa  ; 1.686e MPa  ; 0.009 s    0.281 .m rad
 
 

Complex shear modulus of the four-parameter fractional derivative viscoelastic model in the 

frequency domain takes the form of  
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The complex shear modulus ( )i   consists of a real part '( )  , the storage modulus or the rigidity, 

which characterizes the stiffness of the viscoelastic material, and an imaginary part ''( )  , called loss 



 

 

 

 

 

 

modulus or the energy dissipation, which characterizes the viscous behavior. The expressions for the 

storage and loss modulus obtained for the model we use here are as: 
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Therefore, the loss tangent in the frequency domain can be expressed as: 
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Visco-elastomeric materials are often used as noise-vibration isolators in aviation, mechanical 

engineering etc. We use here a quasilinear fractional derivative Rabotnov's type viscoelastic model [7, 

14, 18] to describe the static creep and dynamic shear behaviour of randomly reinforced rheological 

elastomers as a function of the matrix and particle content. Due to the viscoelastic matrix, the 

predominant behaviour of MREs is the viscoelastic one.  

2.1.  Quasi-linear viscoelasticity 

The starting point for the development of the stress strain relation is the general form of the 

constitutive relation for viscoelastic elastomers, given by [11, 15] 
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where ij  is the Cauchy stress, p  is the pressure, iF   denotes the displacement gradients, 0{ }s 

  is 

a tensor-valued functional with a dependence not only on the strain history but also on the current 

strain. To analyze the problems of prediction deformations within the framework of the hereditary 

creep model, we use the modified Shapery principle of correspondence [7, 14, 17]. We will use the 

notation adopted in [6, 13]. We suppose the existence of a function of stored energy ( )W e  and 

additional energy ( )U σ , which make it possible to find instantaneous deformations ( )te  during creep, 

or instantaneous stresses ( )tσ  in relaxation process 
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Here, stresses and strains are referred to the orthogonal Cartesian coordinate system, and the presence 

of coordinates and time in the list of arguments of the function indicates the possibility of its being 

used for the analysis of inhomogeneous media, composite materials, and in problems where the time 

factor is essential. We consider the material in conditions of steady creep, and write the general 

governing equations of hereditary creep in the form  
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where ( )tσ  is the Cauchy stress tensor. Stress ( )R tσ  is so called modified stress [7, 18], restored from 

the known current values. Relations (6) are the governing equations of a nonlinear elastic body. In 

order to further use the principle of viscoelastic correspondence, we write down the relations between 



 

 

 

 

 

 

current deformations and current stresses in the form of the governing equations of hereditary creep, 

developed in [12, 13]. The hereditary integrals used here are linear functionals with creep and 

relaxation functions depending on the spatial coordinate. This allows us to consider the differentiation 

with respect to the coordinate and hereditary integration over time as permutation operations. 

2.2.  Multi-component random composite theory 

Let us consider some representative volume RV  of the composite material in the undeformed state and 

introduce Cartesian coordinate system 
Ax  with orts Ae  in the reference configuration Rk . The 

position of the material point in this configuration is determined by the radius vector 
A

Axx e  . As a 

result of creep deformation, the position of a material particle in space changes with time and in the 

current configuration  ,Rk k k t  at the time t  is given by a vector with radius 
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where ( , )ty x  is a continuous function of two variables; ( , )tu x  - displacements vector. The following 

kinematic relations take place [6, 13] 

 

, , 2 , ( )T T T       y Fx F 1 H e H H H H H u .  (9) 

 

Here F  is the direct deformation gradient; H  gradient displacements; e  is Green deformation tensor; 

1  is unit second order tensor;   is gradient operator in the coordinates of the reference configuration. 

Then, stress vector Nt  is introduced in the deformed material at the site which in the reference 

configuration is determined by the ort N . The stress vector Nt  is related to a unit area of the 

undeformed state. In this case, we can write 

 

N A Am mN Tt e .    (10) 

 

Here AmT  is the asymmetric tensor of nominal stress (Piola-Kirchhoff) [1, 6]. The true Cauchy stress 

tensor ij  is related to the nominal stress tensor AmT  by the relations 
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Elastomers are usually considered as viscoelastic incompressible material [3, 4], so we choose to 

describe its elastic properties potential in the form of Mooney-Rivlin [6, 7] 
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Here 1 , 2  are the invariants of the strain measure B ,  
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1C  , 2C are elastic constants of material 1 2

1 1
( ); ( ),
2 2

C C           tr  is tensor 

convolution operator [2, 6]. Up to terms of the second order of smallness, by displacements we have 
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In (14) p  is the indefinite dimensionless constant, and   is the dimensionless modulus of the 

material. The incompressibility condition in the theory of viscoelasticity of the second order is written 

[13] as 

2( ) ( ) 0Ttr A HH e .    (15) 

 

Physical relationships with accuracy up to second order are represented in the form  
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where    and   are constants. 

After averaging over undeformed representative volume, nominal stress tensor can be used as a 

macroscopic variable of the nonlinear theory of elasticity [1, 2] and viscoelasticity. Given this, the 

equations of state of the first linear and second nonlinear approximations of the nonlinear theory of 

elasticity are written as: 
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Here, (1)p , (2)p  are scalars, and subscript in parentheses means the order of non-linear approximation, 
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where   is the shear modulus;   is instant modulus of the second-order nonlinear theory. 

2.3.  Multi-component materials 

In the case of multi-component materials, we use the design scheme proposed in [8], the essence of 

which is as follows. If a theoretically exact solution is known 
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then the deformation concentration tensors i , m  [18] are determined by the expressions 
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Then an approximate solution is constructed by replacing the tensor iG , unknown in the general case, 

with the tensor i , known from relations, which connects the mean deformations of the inclusions 

marked with a number and the mean deformations of the representative volume, i.e. 
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Then for tensors iΑ , mΑ , we obtain the representation 
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In this paper, we define the tensor iG  from the solution obtained for an incompressible 

composite material in [8], therefore we take 
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Here, the matrix was obtained by analyzing the stress-strain state in inclusions with a number i . Thus, 

to determine tensors, you can write the following expressions 
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By direct verification, one can be seen that in the case of a two-component material, representation 

(24) is identical to formulas for two component material. From this we can conclude, in particular, that 

the accuracy of the results (24) corresponds to the level of well-known solutions in the mechanics of 

inhomogeneous materials [1, 18].   

2.4.  Second order nonlinear solution 

Equilibrium equations of a representative volume written relative to the random fluctuations of second-

order displacement have the form 
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The gradients of displacements of the second approximation are decomposed into dilatational and 

deviator parts. Then, for the deviators of the second approximation the condition of incompressibility 

will coincide in shape with the analogous condition of the linear theory of viscoelasticity [15, 17]. The 

field of displacements, the field of deformations and stresses must be supplemented with the following 

relations 

 

                    

 
1

( , ) ( , ) ( , ) ; ( , ) 0;
2

( ) ( ) ( ) ( ) ( ) ( ); ( , ) ( , ) '( ),

Tt t t Div t

t t

  

    

e x H x H x σ x

σ x C x e x e x D x e x u x e x x u x
                                (26) 

 

In problems with cyclic loading, the solution can be obtained by Fourier transforms [2]. This makes it 

possible to use the Green function G  of a linear solution of the first order, and obtain an integral 

equation to determine the deviators of displacement gradients 
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We average this equation, provided that the coordination argument of the left side is in the volume 

occupied by spheroidal inclusions with known properties and oriented in the n -direction  [8]. Finally, 

the relations between random parts of (2)H simultaneously with the constitutive elasticity equation in 

Fourier space are obtained. At the same time, nonlinear terms are expressed through macroscopic 

deformations of the representative volume of the composite material 
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Substituting this solution into the second-order averaged physical relations from (26), we find the 

constitutive law of connection between the macroscopic Piola-Kirchhoff stresses and the gradients of 

displacements of the second approximation 
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Overall coefficients ,  are calculated as 
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i.e. Arm is components of matrices rA  are defined in [8, 18].  

2.5.  Examples 

As an example, consider a composite material which is a viscoelastic matrix based on resin ED-6, 

reinforced with two types of inclusions (SiC and ferromagnetic steel short fibers). Nonlinear elastic 

properties of inclusions and matrix are presented in Table 1.  

 

Table 1. Nonlinear elastic material constants, GPa, for the Ferromagnetic Steel/SiC/Epoxy composite. 

  

Material E , GPa    1 , GPa 2 , GPa  3 , GPa  

Steel 207.4 0.27 -1650.0 -309.0 -200.0 

SiC 440.3 0.171 -227.2 31.5 -170.75 

Epoxy 3.15 0.382 13.3 4.09 -10.02 

 

In the case of model for composite with incompressible matrix we use such parameters [1, 8] 
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In the calculations, it was assumed that the relative size of inclusions of the first type (micro-sized 

carbonyl iron particles) is 10r  , and inclusions of the second type (SiC) are assumed to be spherical 

1r  . Elastomeric matrix has shear viscoelastic properties presented in Table 2. 



 

 

 

 

 

 

3.   Results 

The above relations of nonlinear viscoelasticity of Rabotnov type make it possible to describe the 

phenomena of propagation of harmonic waves. Indeed, the generalized Hooke's law in the case of 

viscoelastic deformation has the form 

ij ijkl klC e  ,       (31) 

 

where *ijklC  is the tensor of linear viscoelastic operators such that 
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Here 
e

ijklC  is the tensor of instant elastic moduli; ( )R t  is the fractional exponent kernel of the 

viscoelastic aftereffect [12, 14]. 

As shown in [7, 14], finding the macroscopic operators describing the relationship between average 

stresses ( )ij t  and strains ( )ije t  is reduced to solving equations similar to the nonlinear elastic 

problem (25), (26), where the corresponding tensor of operators ijklC
 should be substituted instead of 

the tensor of elastic moduli ijklC . Due to the fact that the operation of integration over time is 

interchangeable with integration over coordinates and averaging over the volume to solve the problem 

in a viscoelastic formulation, one can use the corresponding solution of its elastic analogue and replace 

the elastic moduli with viscoelastic operators (32) only in the final expressions. Thus, the Volterra 

principle can be used to determine the reduced viscoelastic properties of a material. For this reason, it 

is sufficient to substitute the corresponding integral operators in the formulas of the reduced elastic 

moduli and to decipher the obtained expressions using the algebra of fractional-exponential operators 

[7, 16]. 

When modeling composite elastomers, we assume that the filler is elastically deformed, and the 

binder has shear viscoelastic properties [3, 4]. Experiments carried out at the Institute of Mechanics, 

and known from literature [1, 6] showed that a SiC filler and steel fibers can be considered as 

nonlinear elastic. Shear creep deformations at a temperature of 20°C are fairly well described by the 

linear integral operator 
11 ( )R t         ,     (33) 

where 
1( )R t  

 is the fractional exponential function of Rabotnov [12]. 

 

Table 2. The shear elasticity and parameters of viscoelastic Rabotnov’s kernel for silicone rubber [5]. 

 

flux  

,B Tesla  
  

, MPa  
      

0.0 1.686 2.937 -0.719 0.820 

0.651 2.034 2.764 -0.702 0.732 

 

The parameters of viscoelastic Rabotnov’s kernel for epoxy rubber are identified in [12] 
0.50.054 hour  , 0.5,    

0.50.1764 hour  .  The fractional exponential Rabotnov operator 

with kernel 
1( )R t  

 belongs to the class of well-studied resolvent operators. It possesses a number 

of properties used in decoding operator expressions [16]. In the cases where it is required to know the 



 

 

 

 

 

 

exact result of the operator's action on a constant or variable value, we will use the software package 

in the Fortran F90 shell [13, 18]. 

3.1.  Dispersion and attenuation of harmonic waves in viscoelastic composite elastomers 

Using the correspondence principle [7, 14], let us analyze the dynamic problem for an isotropic 

randomly reinforced elastomer under a stationary cyclic loading regime. If a periodic disturbance with 

frequency   acts on a viscoelastic material, then in (31) it is expedient to go over to the complex 

values 
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   (35) 

  is the circular frequency of harmonic vibrations. 

3.2.  Shear relaxation and shear creep function 

The dependence of dynamic properties of the isotropic randomly reinforced silicone matrix on the 

frequency and magnetic field intensity was numerically modeled. The four-parameter fractional 

derivative quasi-linear viscoelastic Rabotnov’s type model was used. Shear relaxation function ( )G f , 

and shear creep function ( )J f  of composite reinforced with micro-sized carbonyl iron particles were 

calculated. Results obtained presented on fig. 1. It may be noted that the dependence these functions 

on stress loading frequency f  for external magnetic flux B  is really significant as to practical 

problems. We can also note the agreement of the results presented with the experimental data obtained 

in [5] in the studied frequency band for different magnetic flux densities.  

 
(a)        (b) 

Figure 1. Silicone rubber viscoelastic matrix shear relaxation function ( )G f  (a), and shear creep 

function ( )J f  of composite reinforced with micro-sized carbonyl iron particles (b) dependence on 

stress loading frequency f  for different external magnetic flux B . 

4.   Discussion 

Next, we apply the correspondence principle using the Laplace-Carson transform [7, 14]. Thus, the 

reduced complex characteristics are obtained by replacing the elastic constants in expressions (30) 

with complex quantities of the form (34), (35). It should also be noted that with rather complex 

analytical dependences, the numerical methods of the Laplace transform make it possible [18] to 



 

 

 

 

 

 

obtain the values of the reduced complex characteristics without additional restrictions on the value of 

viscoelastic damping. 

Let us consider as an example a composite of a granular structure, the shear modulus of which is 

expressed in terms of the constants of the components by the formula from (30) 
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

       (36) 

 

Replacing here the modulus m  by its complex value, which depends on the frequency of the cyclic 

action, we find the reduced viscoelastic characteristic 
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Let a harmonic wave propagate in an unlimited granular medium that models the reinforced elastomer 

sample. Then, according to the principle of correspondence [7], the speed of this wave is represented 

by the formula 

     
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From relations (37) we find the characteristics of the dispersion and damping of a macroscopic wave 

in a viscoelastic composite medium ( ) ( ) ( )R      . The change in the attenuation coefficient 

in granular rheological elastomer depends on the concentration of micro-sized carbonyl iron particles. 

In this regard, it may be concluded that at low filler concentrations the phenomena of dispersion, 

damping, and energy dissipation are due to both the viscoelastic properties of the binder and the 

structural inhomogeneity of the medium. With an increase excitation frequency and magnetic flux 

density in the concentration of the elastic filler, the predominant effect is the scattering and damping 

of harmonic vibrations on micro-inhomogeneities of the medium. 

 

Conclusions 

The combined analytical and numerical method of prediction of dynamic mechanical properties for 

randomly reinforced isotropic elastomers made of silicone matrix and micro-sized carbonyl iron 

particles is presented in this paper. Dynamic mechanical properties are calculated at various 

frequencies under different magnetic flux densities. The stiffness and damping properties increased 

with increasing of excitation frequency and magnetic flux density. In the further numerical 

experiments may be carry out with the aim of choosing the optimal structure and composition of 

materials for the possible control of frequency, damping properties and long-term strength under given 

technological constraints. 
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