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Abstract. A new analytical representation of the orientation quaternion of a rigid body rotation 

based on four sequentional turns by simultaneously changing in time angles is proposed. A ref-

erence model of rotation, which includes analytical expressions for the orientation quaternion 

and the quasi-coordinates, is developed for the accuracy estimation of algorithms of orientation 

in strapdown inertial navigation systems. Numerical simulation of the reference model is per-

formed and trajectories in the configuration space of orientation parameters are build. It is 

shown that, in comparison with the case of regular precession, the proposed model can be con-

sidered as a more generalized case of rotational motion. This model was used to analyze the 

accumulated errors of the Miller orientation algorithm. Numerical analysis for the drift error of 

the Miller orientation algorithm is done for different values of coefficients. It is shown, that the 

Miller algorithm with a new set of coefficients allows a smaller cumulative drift error in com-

parison with the standard algorithm and the optimized for conic motion algorithm. 

1. Inroduction 

The problem of the accuracy estimation for orientation finding in strapdown inertial navigation sys-

tems (SINS), when the orientation quaternions are calculated on each time of calculation by using a 

special algorithm, is considered. The ideal signals from angular velocity sensors in form of the quasi-

coordinates are used as input for this algorithm [1]: 
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where )(ti , 3,2,1i are projections of the vector of the object absolute angular velocity 


 on the 

coordinate system axes. A large number of based on different approaches algorithms of orientation 

quaternions finding by using initial information are developed [2–4] as of today. One of those algo-

rithm types is based on the use of intermediate parameters such as the orientation vector and corre-

sponding trigonometric expansions in terms of an Euler half-angle. Significant contribution into the 

development of the orientation vector finding algorithms of different orders is made by A Panov [5, 6]. 

He developed a number of algorithms that use initial information (1), which is associated with differ-

ent times of output information. The disadvantages of these algorithms are the need of preliminary 

calculations to initialize the first step and the large load of an autonomous computing device on every 



time of computation. Nowadays, in the context of the modern developing of a navigation system in-

strumentation, increasing of a processing speed of computational devices and application of these de-

vices to high dynamic objects, high interest is focused on the algorithms that use inertial information 

within a time of computation. These algorithms are based on a polynomial approximation of the angu-

lar velocity within a time of computation [7,8]. E.g. the famous Miller algorithm [7] utilizes the quad-

ratic model of the angular velocity which yield the following expression for the orientation vector 

increment on a time of computation ],[ 1 nn tt  : 
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 are the 

output signals of giroscopes obtained within a time of computation on the steps of initial information 

reading Ttn  3/11 , Ttn  3/21 , Ttn 1 , T  is a time of computation size. The follow-

ing values are used in the Miller algorithm: ,
80
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57
 . 

The estimation of the algorithms regular error is based on the special rigid body test motions, 

which possess the well-known analytically derived orientation vector and the angular velocity vector. 

An analytical model of the conic motion (the so-called “SPIN-CONE” model) is presented in [9]. Due 

to the fact, that the local or the cumulative algorithm error has an analytical representation in case of 

the test motions, algorithms of orientation can be optimized for every specific test motion. Miller pro-

posed in 1983 the optimization of algorithms of orientation in case of the conic motion by only coeffi-

cient fitting without changes in the algorithm structure. This optimization procedure is based on the 

analytical representation of the algorithm error in terms of polynomial series with further obtaining of 

the unknown coefficients    , when the series are truncated. Another approach, which is basically 

identical, was proposed by Ignagni in 1990 [10]. The following coefficient values are used in the op-

timized for the conic motion Miller algorithm: ,
80
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 . The optimization methodology for 

the case of the regular precession and the conic motion was introduced by A Panov [11-13]. This 

methodology is based on a minimization of the asymptotic representation of the numerical drift error. 

The improved optimization methodology is presented in [14, 15]. These works contain also results of 

the algorithm optimization study in case of the generalized conic motion [10], in case of the regular 

precession and a random angular motion. 

The accuracy estimation of algorithms of orientation (also of those, which are optimized for a one 

specific motion) on more complex rotational motions have a high practical importance, because the 

conic motion and the regular precession are the quite specific cases of an angular motion of a rigid 

body, possessing, however, analytical solutions of dynamic and cinematic equations. The new test 

motions of a rigid body on the base of a trigonometric representation of the orientation quaternions are 

presented in [16-18]. 

In the current work, a new reference model of a rigid body rotation based on a four-frequency rep-

resentation of the orientation quaternions is presented as one of the types of these generalized motions. 

 

2. The reference model, which is based on a sequence of four rotations of a rigid body 

Let the first three rotations of a rigid body be performed in order of the Krylov angles  ,   and   

[2]. The fourth rotation is performed around the second rotated axis by the angle  . The components 

of the resulting quaternion are represented then as: 
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The components of the angular velocity vector are obtained from the inverted kinematic equation 

for the normalized quaternion )(t : 
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t  is the conjugated quaternion. Next, we obtain:  
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The components of the orientation quaternion (3) and the components of the angular velocity vec-

tor (5) can be interpreted as the solution of the dynamic and the kinematic equations of a rigid body 

rotation jointly. The basis of the reference model are the analytical relations for the orientation quater-

nion (3) and the quasi-coordinates (1) under considerations that angles  ,  ,  ,   are known. The-

se angles can be defined on the basis of the existing limitations of the angular velocity of an object 

considered as a rigid body, or these angles can be obtained as an approximation of a real motion of a 

particular object.  

Assuming that the angles are linear functions of time tk1 , tk2 , tk3 , tk4 , the 

relation (5) leads to the analytical representations for the quasi-coordinates (1). To this end we need 

firstly to find the components of the seeming turn vector  
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and then to apply the formula: 
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Note that the proposed reference model can be used to model a rotation of a rigid body in case of 

vibrations, if the corresponding frequencies are properly defined and considering, e.g.   . 

 

3. Numerical Simulation of the four frequency reference model of rotation 

Let us simulate the proposed four-frequency model for some frequency values 4,3,2,1, iki . Let us 



consider the case   . Figure 1 demonstrate the dependence of the quasi-coordinate 
*
ni  on time 

for the following frequencies: 15.01 k , 55.12 k , 35.03 k , 55.14 k . The obtained trajecto-

ries in the configuration space of the orientation parameters are presented in figure 2. 
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Figure 1. The dependence of the quasi-coordinates on time for the four-frequency reference model 

considering 15.01 k , 55.12 k , 35.03 k , 55.14 k . a – the first axis, b – the second axis, c – 

the third axis. 
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Figure 2. Trajectories in the configuration space for the four-frequency reference model considering 

15.01 k , 55.12 k , 35.03 k , 55.14 k . a – )( 01  ; b – )( 02  ; c – )( 03  ; d – )( 12  . 

 
4. Accuracy study of the Miller algorithm using the four-frequency reference model 
Let us apply the four-frequency reference model to estimate accuracy of the fourth order algorithm of 

finding the orientation quaternion, where the orientation vector increment on step ],[ 1 nn tt   is ob-

tained by using the Miller formula (2) for different values of the coefficients  ,  . In order to esti-

mate the algorithm accuracy we consider as the error the non-removable orientation residual – the 

cumulative drift of the computed triad of the axes with respect to its true position defined from the 

reference model. To this end let us use the drift determination methodology proposed in [2]. 

Figure 3 a shows the dependence of the drift error on time in the interval ]1000,0[t sec., which 

is obtained using the time step 1.0t sec for the four-frequency reference model with 15.01 k , 

55.12 k , 35.03 k , 55.14 k  and the Miller algorithm (2) considering ,
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the purpose of comparison the fig. 3 b demonstrates the dependence of the drift error on time in case 

of the optimized Miller algorithm with ,
80
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80

54
 . Note that the optimized algorithm results 

in a smaller drift error.  

Let us consider another set of the values of   and   in the Miller formula (2). Let us build the 

new algorithm based on the fact that 
80
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  . To this end we consider 0 , 
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equation (2) is rewritten in the following form: 
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Let us estimate the cumulative drift error for the quaternion finding algorithm, if the orientation vector 

increment on a time of computation is obtained from (8). The dependence of the drift error on time is 

shown in figure 3 c. Note that the drift error in the case 0 , 
80

90
  in equation (2) is clearly 

smaller than the drift error in both the standard Miller algorithm and the optimized Miller algorithm. 
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Figure 3. The dependence of the drift error on time for the algorithm of the fourth order in the cases:   

a - ,
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 ;  b - ,
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Table 1 contains the final values of the cumulative drift errors obtained for the Miller algorithm 

with ,
80

33
  

80

57
 , for the Miller algorithm optimized for the conic motion ( ,
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 ), 

and for the algorithm (8).  
 

Table 1.The final values of the cumulative drift error 

The Miller algorithm Drift, rad 

,
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57
  

310616.1   

,
80
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  

80

54
  

310601.1   

,0  
80

90
  

310433.1   

 
Conclusions 

The new analytical model of a rigid body rotation on the base on four sequential turns by linear angles 

is proposed. In contrast to the known cases of analytical integrated systems of equations of a rigid 

body rotation, this model can be considered as a more generalized case of a rotation motion. The pro-

posed model is used as the base for the reference model. For this purpose, it has been supplemented 

with the analytical expressions for the quasi-coordinates. The simulation of the four-frequency is used 

as the test motion for the estimation of the drift error of the fourth order algorithm of orientation find-

ing with the use of the orientation vector, which increment is obtained on a time of computation using 

the Miller algorithm, as the intermediate parameters. It is shown that for the Miller algorithm with the 

coefficient values 0 , 
80

90
  the cumulative drift error is less than for both the traditional algo-

rithm and the optimized for the conic motion algorithm.  
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