
Comparative analysis of visual navigation systems

V M Sineglazov1 and V S Ishchenko1,2

1 Department of Aviation Copmuter Intergated Complexes and Control Systems,

National Aviation University, 1 Liubomyra Huzara ave., Kyiv 03058, Ukraine

2 E-mail: ischenkoVitaly@gmail.com

Abstract. Nowadays, the requirements for UAV navigation have increased significantly; in

addition, it is necessary to provide UAV navigation in the area of active radio interference,

where signals from the satellite navigation system are blocked and only inertial system based

on MEMS provide navigation [4]. To solve the navigation problem, additional sources of

navigation information with a high degree of noise immunity are required. A visual navigation

system (VNS) is proposed as an additional source of navigation information. The VNS

includes: digital camera, additional navigation information calculator, gyro stabilized

suspension, and autopilot information transfer interfaces for navigation and location correction

due to refinement of landmarks. This article discusses the algorithmic software of visual

navigation systems and compares the methods. The methods of the computer vision library

(open CV) are considered in practice, their analysis and comparison of results for solving the

problem of visual navigation are carried out. The main test of algorithms was carried out on

frames of video recording of a flight with duration of more than 10 minutes. Analyzed the

workability for autonomous flight in the absence of GPS signals. Considered the main

requirements for local key points detectors and descriptors, performed measurement

performance of different detectors and descriptors. During designing and developing software

for the on-board (companion) computer, weight, size and computational restrictions are

imposed. At the same time, the visual navigation system should provide highly accurate

navigation close to the satellite navigation system. Tests for the computational power

consumption of different algorithms have been carried out and the results are presented in

tables and figures.

1. Introduction

During designing and developing software for the on-board (companion) computer, weight, size and

computational restrictions are imposed. At the same time, the visual navigation system should provide

highly accurate navigation close to the satellite navigation system. In most cases, computer vision

methods (most often from the OpenCV library) are used as algorithmic support for detect and describe

local features (key points) on image, match them using brute force or similar matcher, estimate

homography by RANSAC algorithm, filter inliers from all the matches, calculate total shift UAV

relative to ground landmarks. This article analyzes, compares and evaluates the accuracy of computer

vision methods. A deep analysis of the applicability of computer vision methods for high-precision

visual navigation of UAVs and error estimation has been carried out.

2. Literature review and problem statement

There is a video stream of frames from a camera on a gyro-stabilized gimbal, represented by a

sequence of two-dimensional matrixes of pixels, due to the limited performance of the on-board

computer, frames are resized to 520x380 pixels. To do this, it is necessary to select a detector

descriptor and matcher of local features to achieve maximum accuracy and minimize computational

load. The main goal is to achieve a stable search, description and determination of landmarks from

frame to frame for a flight lasting at least 10 minutes in the area of active radio interference.

Review of existing solutions, also presented in official docs [1]

The following descriptors of computer vision are widely used:

- SIFT, Scale-invariant Feature Transform

- SURF, Speeded Up Robust Features

- FAST, Features from Accelerated Segment Test

- AKAZE, Accelerated KAZE

- ORB, Orientated BRIEF Rotated FAST

- BRIEF, Binary Robust Independent Features

- RANSAC Random Sample Consensus

As feature point matchers commonly used BF (Brute Force Matcher) and KNN (K – Nearest

Neighbour), more information presented in official computer vision library docs [2] (different types of

matching algorithms, also their accuracy and performance were compared in this topic).

3. The aim and objectives of research

Consider the stages of program execution. The video stream, were taken and saved from quadcopter

DJI Phantom 3 pro, with 4k frames resolution which is too much for processing on the on-board

computer. Video stream from drone camera processed by client server application in on-board

computer and all details how it works presented by link [3]. That’s why first step is resizing input

video frame from 4k to 520x380 pixels and then converting to grayscale. Comparison of all existing

computer vision local features detectors and descriptors with matching key point pairs were

performed. All performance tests, has been performed on CPU Intel core i3 8145U 2.1GHz using 8GB

ram memory under linux OS.

4. The method of tandem propeller hub losses reduction

For an illustrative example, used the most computationally laborious SIFT descriptor and BF matcher.

There are input color frame presented in Figure 1.

Figure 1. Original colored input image.

Resizing and converting to grayscale are performed for faster calculations, then creating instance of

descriptor SIFT to detect and describe local feature points. Repeat this procedure for next frame, after

that use brute force matcher (BF matcher) for building points pairs and filter outliers (Figure 2).

Figure 2. Building, matching feature points pairs using BF and SIFT.

Iteratively processing frame by frame live video stream from camera to provide visual navigation,

calculation pixel shifts, conversion to meters and obtaining current GPS coordinates of UAV is

performed. A local feature points detection, building key points descriptors and matching pairs for

UAV position shift calculation between previous frame ad current frame is shown in Figures 3,4,5,6.

Figure 3. Local feature points detection, building key points descriptors and matching pairs between

previous frame and current frame.

Figure 4. Local feature points detection, building key points descriptors and matching pairs between

previous frame and current frame.

Figure 5. Local feature points detection, building key points descriptors and matching pairs between

previous frame and current frame.

Figure 6. Local feature points detection, building key points descriptors and matching pairs between

previous frame and current frame.

6. Results of frames processing by different algorithms and frame sizes

Pay attention to processing time of the frame (SIFT + BF) with a sizes of 520x380, 720x576 and

classic 800x600 in seconds in table 1.

Table 1. Processing time of one frame in seconds.

Frame size 520x380 Frame size 720x576 Frame size 800x600

0.126498 0.261223 0.366817

0.125311 0.259818 0.307732

0.124878 0.256252 0.325083

0.124943 0.257062 0.308956

0.126292 0.257318 0.310021

0.126852 0.256654 0.320367

Resizing frame from 4k to 520x420 takes near 0.01 second, this is amazing fast and processing frames

with less size as shown in Table 1 gives multiple times increasing performance. Table 2, shows

performance comparison between typical local feature points descriptors.

Table 2. Processing feature points descriptors in seconds.

SIFT SURF ORB AKAZE

0.149122 0.0522411 0.0341239 0.0326113

0.165375 0.0499295 0.0298967 0.0297523

0.180101 0.0549136 0.0299566 0.0297916

0.176874 0.0487743 0.0298781 0.0296977

Results if performance matching using SURF + BRUTE FORCE MATCHER (BF) and SURF + KNN

(K – Nearest Neighbors) presented in Table 3.

Table 3. Comparison of performance two matching algorithm.

SURF + BRUTE FORCE matcher SURF + KNN matcher

Times passed in seconds: 0.0640599 Times passed in seconds: 0.0632252

Times passed in seconds: 0.0553908 Times passed in seconds: 0.055204

Times passed in seconds: 0.064352 Times passed in seconds: 0.0630322

Times passed in seconds: 0.0571646 Times passed in seconds: 0.0583795

Times passed in seconds: 0.0541796 Times passed in seconds: 0.0749743

Visual navigating system integrate with autopilot using UART interface and Mavlink protocol [5],

more details about integrating external systems with autopilot shown in [6], [7].

7. Discussion the research results

The obtained results indicate the need to supplement the methods for calculating local features with

alternative ones, for example, by calculating the optical flow to reset the accumulating error and

improve the accuracy of visual navigation system. Additional approach to increase accuracy of visual

navigation system is implementing convolution neural network and switch to it in case of

homogeneous terrain like flight over water, snow.

Conclusions

Computer vision methods based on local feature detection and description provide very low

computational load on the on-board computer, however, they introduce a system error during sharp

maneuvers of the UAV and must be compensated with additional software modules like neural

networks, optic flow calculation to make high accurate visual navigation system. During experiments

in this topic was used read autopilot Pixawh that integrated with our on-board computer – JetsonTX2

and provide autopilot correction using UART interface and MAVLINK protocol. More details about

autopilot and the way of integration with external systems presented by link [8], and flight controller

specification [9].

References

[1] OpenCV-Python Tutorials. Feature Detection and Description

https://docs.opencv.org/3.4/db/d27/tutorial_py_table_of_contents_feature2d.html

[2] OpenCV Tutorials. 2D Features framework

https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html

[3] V G Olifer and NA Olifer 2004 Computer Networks, Principles, Technologies, Protocols

(St. Petersburg) p 864

[4] E N Pyatnyshev, M Lurie, I Popov and A N Kazakin 2001 The specifics of MEMS technology

devices pp 32-35

[5] Malink protocol used for communication autopilot and on-board computer

https://mavlink.io/en/services/mission.html

[6] V A Rogozhin, V M Sineglazov and N K Fіlyashkіn 2004 Aerobatic-navigation complexes of

aircrafts (Ukraine: National Aviation University)

[7] V A Rogoshyn, V M Sineglazov and N K Filyashkin 2004 Flight Navigation Complexes of

Aircrafts (Ukraine: National Aviation University) p 238

[8] Integration autopilot and on-board computer https://ardupilot.org/dev/docs/companion-

computer-nvidia-tx2.html

[9] Flight controller Pixhawk http://pixhawk.org

