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Overview on semi-supervised learning methods 

Proposed a new approach to semi-supervised learning in aviation. Provided the 
results of semi-supervised methods modelling. 

Semi-supervised learning. 

Semi-supervised learning is a wide category of machine learning techniques 
that use both labelled and unlabelled data; thus, as the name implies, it is a hybrid 
technique between supervised and unsupervised learning. 

In general, the basic idea behind semi-supervision is to treat a data point 
differently depending on whether it is labelled or not: for labelled points, the algorithm 
uses traditional control to update model weights; and for unlabelled points, the 
algorithm minimizes the difference in predictions between other similar training 
samples. 

For example, we will consider a binary classification problem Figure 1. 
Suppose we have only 12 labelled data points, and the rest are unlabelled. 

Fig.1. Dataset example for a binary classification problem 

Supervised learning updates the model weights to minimize the average 
difference between predictions and labels. However, with a limited amount of labelled 
data, this can lead to a decision boundary that is fair for the labelled points, but does 
not generalize to the entire distribution-as in Figure 2 below. 

Fig.2. Supervisedlearningdecisionboundary 
On the other hand, unsupported learning attempts to cluster points based on 

similarity in some feature space. But without labels to guide the training, the 

3.3.17



unsupervised algorithm may find suboptimal clusters. In Figure 3, for example, the 
clusters found do not correspond correctly to the true class distribution. 

 
Fig.3. Unsupervisedclustering 

 
Without enough labelled data or in complex clustering conditions, supervised 

and unsupervised methods may not produce the desired results.In the semi-supervised 
method, however, we use both labelled and unlabelled data. Our labelled data points 
act as a sanity check; they justify the predictions of our model and add structure to the 
learning problem by determining how many classes exist and which clusters 
correspond to which class.Unlabelled data points provide context; by exposing our 
model to as much data as possible, we can accurately estimate the shape of the entire 
distribution.By having both parts, labelled and unlabelled data, we can train more 
accurate and robust models. In our dataset, training with semi-supervised approach 
allows us to approximate the true distribution shown in Figure 4. 

 
Fig. 4. Semi-supervised approach 

The Cluster, Consistency, and Manifold Assumptions 
As a broad subset of machine learning, semi-supervised intuition is based on 

several basic principles. The continuity, or smoothness, assumption indicates that 
closely spaced data points are more likely have the same label. 
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Similarly, the clustering assumption indicates that in a classification problem, 
the data tends to organize into clusters of high density, and that data points in the same 
cluster are likely to have the same label. Therefore, the decision boundary should not 
lie in areas with dense packing of data points; rather, it should lie between areas of 
high density, dividing them into discrete clusters. 

 

 
Fig. 5. Undesired and desired decision boundary 

The manifold assumption adjustspredictions for our data to deep learning 
applications, including natural language processing and computer vision. It suggests 
that the distribution of high-dimensional data can be represented in an embedded low-
dimensional space.This low-dimensional space is called the data manifold. 

Consider the problem of binary classification of images of cats and dogs. In 
deep learning applications, an image is simply a large tensor of values indicating pixel 
colors. This image space is our multidimensional space. 

Based on values of colors, images of dogs and horses are dispersed in an 
obscure distribution in anEuclidean high-dimensional space, in which, there is no clear 
clusters. Therefore, it is possible to assume that exists a lower-dimensional manifold 
such that the idea of distance is representative of semantic meaning—in this case, 
where datapoints of dogs are clustered near dogs, and horses are clustered near horses. 

In deep learning, working with the distribution of high-dimensional images of 
dogs and horses is tough. That is why, based on the manifold assumption, our model 
can learn the function mapping images in Euclidean space to representations on our 
low-dimensional manifold. So that, our cluster and continuity assumptions are more 
reliable, and we can classify a datapoint based on its learned representation. 

The manifold assumption helps to harness semi-supervised techniques in deep 
learning settings. 

Semi-supervised learning techniques 
 
The main motivation for using consistency regularization is to take advantage 

of continuity and cluster assumptions.  
In a semi-supervised environment, suppose we have a dataset with labeled and 

unlabeled examples of two classes. 
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During training, we treat labeled and unlabeled data points differently: for 
labeled points, we optimize using traditional supervised learning, calculating losses by 
comparing our prediction to our label; for unlabeled points, we want to ensure that on 
our low-dimensional manifold, similar data points have similar predictions. To enforce 
consistency let us consider dataset D so that: 

 
𝐷𝐷 = {(𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑌𝑌), (𝑋𝑋𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)},𝑌𝑌 =  {𝑦𝑦1,𝑦𝑦2, … },𝑦𝑦𝑖𝑖 ∈ {𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑔𝑔𝑔𝑔𝑟𝑟}       (1) 

 
With different augmentation techniques, we can artificially create similar 

datapoints. 
Consider the Augment(x) function, which slightly modifies x. We need to 

make sure that our model produces the same predictions for the augmented data point, 
Augment(x), and its original counterpart, x. 

 
Fig. 6. Augmentation function 

For a given image x, our model must make similar predictions for all data 
points in the radius of the Augment(x). In practice, this is achieved by introducing both 
a controllable and an uncontrollable loss term. Some of the most popular 
implementations of consistency regularization are Pi-Models and Temporal 
Ensembling, proposed by Lane and Ayla [1]. 

WithCrossEntropy, a supervised function of loss, and the model f Laine and 
Aila formulate the loss as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝐶𝐶𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑔𝑔𝐶𝐶𝑔𝑔𝑙𝑙𝐶𝐶𝑦𝑦(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + ||𝑓𝑓0(𝑥𝑥𝑖𝑖)− 𝑓𝑓0(𝑥𝑥𝑖𝑖) − 𝑓𝑓0�𝐴𝐴𝐴𝐴𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐶𝐶 (𝑥𝑥𝑖𝑖)�||22,𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

||𝑓𝑓0(𝑥𝑥𝑖𝑖)− 𝑓𝑓0�𝐴𝐴𝐴𝐴𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐶𝐶 (𝑥𝑥𝑖𝑖)�||22, 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
�(2) 

 
Optimizing this loss for unlabelled data points results in the distance - 

measured by the L2-norm - between predictions for any Augment(x) must be the same 
as the prediction for the original x. By minimising the distance between predictions of 
similar data points, we will find a decision boundary consistent with our continuity and 
clustering assumptions. 

The term unobserved loss directly induces the model to assign similar data 
points to the same cluster; and if the model predictions agree within a certain radius 
around each data point x, then the decision boundary will be away from clusters with 
high data density. 
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Pseudo-labeling 
Pseudo-labelling is a concept where, in process of training, model’s 

predictions are converted into a “one-hot” label. 
𝑀𝑀𝑙𝑙𝑟𝑟𝑔𝑔𝑙𝑙 𝐶𝐶𝑔𝑔𝑔𝑔𝑟𝑟𝑝𝑝𝑝𝑝𝐶𝐶𝑝𝑝𝑙𝑙𝑔𝑔 �0.65

0.15� → 𝐶𝐶𝑙𝑙𝑔𝑔𝐶𝐶𝑔𝑔𝑔𝑔𝑙𝑙𝑝𝑝𝑙𝑙𝑔𝑔 𝐶𝐶𝑙𝑙 𝐶𝐶ℎ𝑔𝑔 "𝑙𝑙𝑔𝑔𝑔𝑔 − ℎ𝑙𝑙𝐶𝐶"  𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙 �1 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
0 𝑙𝑙𝑙𝑙𝐴𝐴𝑔𝑔 � 

All the confident predictions of the model are converted into "one-hot" vectors, 
where the most confident classes become the labels. Based on this, we train on the new 
one-hot probability distribution as a pseudo-label.  

Not only can we create artificial labels, but training on pseudo labels is a form 
of entropy minimisation, which means that model predictions are encouraged to have 
high confidence on unlabelled data points. Similarly, by taking certain predictions as 
true, we avoid learning any general rules about the true distribution of the data 
(inductive learning). Thus, pseudo-tags offer a form of transductive learning - 
reasoning from given training data to other specific test data. 
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