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Application of deep learning hybrid convolutional neural networks in visual 
navigation systems 

In this paper review of modern applications for navigation algorithms was done. As a 
result, algorithmic shortcomings were identified and the usage of convolutional 
neural networks was proposed. Within the research the qualitative analysis of modern 
architectures of convolutional neural networks was carried out and their separate 
shortcomings at use in systems on the basis of aircraft hardware was shown.  

I. Introduction  
 Nowadays, embedded systems ad-hoc designed to work in relative isolation 

are being replaced by AI-based sensor nodes that acquire information, analyse and 
interpret it, and utilize it to communicate with the environment and with one other. The 
"ultimate" IoT node will be able to navigate the surroundings independently while 
simultaneously perceiving, analysing, and comprehending it. 

Complex aircrafts and completely autonomous unmanned aerial vehicles 
(UAVs) are ideal embodiments for this type of smart sensors: because to their speed 
and agility, they are able to rapidly gather data from both their onboard sensors and a 
multitude of devices placed in the surrounding environment. Additionally, aircraft 
might undertake sophisticated onboard analytics to pre-select vital data before 
transferring it to centralized computers. For unmanned aerial vehicles (UAVs), the 
small size of drones is ideal for both indoor applications where they must operate 
safely near humans (for surveillance, monitoring, ambient awareness, interaction with 
smart environments, etc.) and for densely populated urban areas where they can exploit 
complementary sense-act capabilities to interact with their surroundings (e.g., smart-
building, smart-cities, etc.)[1]. 

The one of traditional approaches to autonomous navigation of aircraft or 
UAV is the so-called localization-mapping-planning cycle which is based on 
estimating UAV velocity using either offboard (e.g., GPS) or onboard (e.g., 
visualinertial) sensors, constructing a local 3D map of the environment, and planning a 
safe pathway across it. However, these solutions are prohibitively costly for systems 
with limited computing resources. Recent research has shown that considerably 
simpler algorithms based on convolutional neural networks (CNNs) are enough to 
enable basic reactive navigation of drones, even in the absence of an environment map. 
Nonetheless, their computational and power requirements exceed the budget of 
existing drone navigation engines, which are based on basic, low-power 
microcontroller units (MCUs). 

Visual navigation is now one of a multitude of image recognition tasks. 
Utilizing convolutional neural networks is the key to solving these problems; 
nevertheless, a number of variables must be addressed, including the utilization 
platform, the accuracy of the goal, and the performance of the system. The majority of 
contemporary varieties of convolutional neural networks are significantly constrained  
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Fig. 1. Example of landscape-based visual analysis of urban surroundings. 

because to their learning speed and complexity, and they also demand a high-quality 
training sample. Over time, the architectural complexity of convolutional neural 
networks has increased in order to solve such problems and improve result quality and 
accuracy, which has led to the emergence of new issues when further structural 
enrichment of convolutional neural networks encounters hardware limitations. In such 
circumstances, hybrid convolutional neural networks become vital. Multiple 
convolutional neural networks may be linked to build a hybrid convolutional neural 
network in order to improve overall performance and precision. In this article, we will 
discuss and show the findings of research into the use and architecture of hybrid 
convolutional neural networks, as well as their optimization and training. 

II. Applications of hybrid convolutional neural networks within
visual navigation 

Visual navigation is a complicated system of interconnected algorithms for 
picture identification, processing, and enhancement. Since the primary process of 
implementing visual navigation is dependent on the identification of the surrounding 
environment, which is the raw graphical data by itself, the recognition process may be 
performed using convolutional neural networks. Different forms of navigational 
systems might be subdivided, resulting in a variety of tasks that need be performed 
using neural networks. The primary forms of visual-based navigation strategies 
include[3]: 

• landscape-based visual analysis (it based on recognition the different in
heights of surface, mapping the 3D map that is used to construct optimal flight-path) 
that is showed in figure 1; 

• key-fractured visual navigation (visual identification of known object whom
navigational data could be used by passing by aircraft or UAV). 

The fundamental approach for localization and control is based on the concept 
of a vanishing point obtained from the picture received. Processing the received 
picture, identifying line characteristics, and scaling pixel offsets and pixel counts on a  
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Fig. 2. Hybrid convolutional neural network simplified structural scheme. 
 

line to real lengths determines intersections, dead-ends, and their closeness to the 
drone. Knowing the distance to an intersection or dead-end allowed the aircraft to 
descend in a timely manner in order to perform correct turning maneuvers. However, 
during the implementation of such a method, the following constraints must be 
considered: 

- this method is highly dependent on visual clarity and lighting; many features 
and edges whose detection is crucial for identifying dead-ends or intersections may not 
be highly noticeable due to poor contrast, reflections, very florescent lighting (sunlight 
coming through introspective side), or occlusions due to environmental entities; 

- scalability issue where adding more capabilities to the image processing 
components to handle a broader variety of situations did not scale or generalize well to 
the much increased number of conceivable scenarios that must be handled; 

 
III. Topology analysis of modern convolutional neural network 

Before delving into the specifics of the implementation of hybrid CNN 
systems for visual navigation, it is important to examine CNNs themselves. Today, 
convolutional neural network (CNN) is the fundamental technique for processing 
graphical input and extracting features. It is a prominent deep learning architecture. By 
analyzing a lot of prepared graphical input data, these neural networks may 
automatically extract the features or representation properties due to their unique 
architecture. One component of CNN extracts characteristics, while another processes 
and classifies them based on the original job requirements[2]. 

Similarly, a hybrid convolutional neural network is the merging of two or 
more distinct convolutional neural networks that are set and organized to function in 
pair (serial or parallel) and tackle a certain job or range of tasks. 

The concept behind HCNN design is to execute the single-responsibility 
principle, which requires each system component (such as CNNs, 
classification/recognition algorithms, and input/output data processors) to do just one 
specified duty. Therefore, complicated specialized tasks may be broken down into 
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needed dataflow phases that must be implemented. Each step will be carried out using 
its corresponding ingredient. 

Having these reduced tasks makes training neural networks simpler and 
improves their accuracy and performance. As an example, the following networks may 
be merged: densely connected convolutional neural network in conjunction with 
squeezing and excitation convolutional neural network based on ResNeXt. Due to the 
global information held at the SE-CNN[5, 6] structure and the overall performance of 
DenseNet, it has great potential. While merging networks, the following factors must 
be taken into account: 

• input data variables include starting scale, resolution, channels count, and 
identification task type; 

• the first CNN's output must be suitable to the second CNN, and the original 
target data must be preserved; 

• The topologies of both CNNs must be flexible and able to include layers such 
as normalization layers, residual blocks, dropout layers, 1x1 convolution layers, and so 
on. 

In this method, any CNN type may be matched. It depends largely on the 
particulars of tasks and input data factors (e.g. image resolution, scale, color channels, 
number of training samples, etc.). 

 
IV. Choosing the optimal hybrid convolutional neural network for 

visual navigation implementation in aircraft conditions 
As the majority of visual navigation tasks are utilized on UAVs and aircrafts 

that are severely constrained in terms of computational speed and power consumption, 
it is necessary to select a convolutional neural network and architecture that can be 
easily streamlined and performed on peripherals with limited resources. As an 
example, we choose devices based on the STM32 architecture with 4-cores operating 
at nominal rates of 1.9(1.67) GHz, 1.1GB of LPDDR3X RAM, and an Adreno 440 
GPU. Potential CNN architectures should not be too complex in terms of layer count 
and should have robust feedback links across structural levels. There are a few known 
architectures among contemporary convolutional neural networks that might be used 
for our needs: 

• EfficientNet B0 & EfficientNet B3; 
• MobileNet CNN & MobileNet V2 CNN; 
• DroNet LVS 2; 
• InceptionResNet V2 CNN; 
• DenseNet201 & DenseNet169 & DenseNet121; 
• Channel-boosted 2OR CNN; 
• ResNet101; 
It was anticipated that the Top-1 accuracy rate would stay the same throughout 

the conversion between TF and TFL for all architectures, as a difference would 
indicate implementation differences and impede the subsequent metric evaluations. 
The models with the best accuracy were DenseNet121 and DenseNet201 [4], both of 
which achieved 98.18 percent. We would like to point out that the accuracy depends 
on the application, therefore a lesser accuracy does not always indicate that the design 
should be abandoned. 
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Fig. 3. DroNet accuracy results and learning process comparison of HCNN 
architectures 

 
The only assessed metric that differed significantly between the TF model 

executed on a computer and the TFL model executed on a mobile device was 
inferential time. Due to structural variations in between two environments, there was a 
disparity in the latency of distinct processes. MobileNet was the TF model with the 
shortest inference time, while MobileNetV2 was the TFL model with the shortest 
inference time. 
 

V. Conclusions 
In this paper we’ve done the review of modern implementation ways of visual 

navigation in pair with different onboard aircraft systems and hardware used both for 
UAVs and aircrafts. In the result of visual navigation system analysis, the main sub-
tasks were excluded. Based on the criteria that is related to the type of visual 
navigation approach, it’s running hardware and usage approach, the classification list 
of recognition tasks and their implementation details was listed. To solve them we’re 
recommended to use hybrid convolutional neural network systems as it’s the best tool 
for image recognition and processing at this moment. To apply this neural network for 
image processing, the basic review of convolutional neural network essentials was 
considered, including resulting structural idea, the number or core layers and their 
configuration parameters. 
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