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Software-numerical optimization of coefficients of the Miller algorithm for a
four-frequency model of angular motion of a rigid body

Refined coefficients of the Miller orientation algorithm, optimized for the analytical
Sfour-frequency model of the angular motion of a rigid body, were obtained. It is
shown that the Miller algorithm with a new set of coefficients provides a smaller
calculation error of the accumulated drift compared to the classic Miller algorithm
and Ignagni's modification, which are optimized for conical motion.

Four-frequency analytical model of angular motion of a rigid body.

The mathematical model of the kinematics of the angular motion of an object
as a rigid body is based on a sequence of four linear rotations, where the first three
rotations are performed corresponding to the Krylov angles ¢(¢) = k¢, y(t) = kot and

(1) = kst , and the fourth rotation is performed around the second axis rotated by the
angle y(¢) = k4t . The resulting quaternion A(?) = (Ag(2), 41 (?), A, (), A43(¢)) in this
case will have the form:
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where fl,fz ,12 are the orthos of the respective axes, and ky,k,, k3 are the frequencies.

A(t) = (cos% + f3 sin

Projections ;(¢) of the angular velocity vector of the body @(¢) onto the

connected axes can be obtained from the inverse kinematic equation
a(t) = 2/~\(t) ° % A?), /N\(z) is the conjugate quaternion to  A(¢):
(1) = —sin(kyt)(ky cos(kyt) cos(kst) — ky sin(kst) + cos(kyt) (ks — ky sin(k,t));

() =ky+ %kl (sin((k3 + ko )t) +sin((k3 —ky)t)) + ky cos(kst);

w3 (1) = sin(kyt) (k3 — ky sin(kyt)) + cos(k4t)(ky cos(kyt) cos(kst) — ky sin(kst)).
To model ideal signals at the output of angular velocity sensors in the form of
quasi-coordinates, the components of the apparent rotation vector must first be found

- t
analytically 6(t) = (6,(¢),0,(¢),65(t)) =[ @(t)dt, i =1,2,3 , and then use the formula
0

O = 0:(1,)~O:(t,_y), i=1,23.

The described kinematic model of angular motion is analytical, there are no
errors associated with numerical integration in the quasi-coordinate values. Thus, it
can be considered that a test movement has been built for evaluating the accuracy of
orientation algorithms in SINS.
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Software-numerical implementation of the angular motion model.
Figure 1 shows the time dependences of the projections of the angular velocity
vector for the four-frequency model on the time interval #e[0,1000]s for the

frequency values of the kinematic model 4 =0.15,%, =1.55, k3 =0.35, k4, =0.75.
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Fig. 1. Projections of the angular velocity vector of a rigid body

a — on the first axis; b — on the second axis; ¢ — on the third axis

Software-numerical optimization of the Miller algorithm.
In the Miller algorithm [1], the increment of the orientation vector per

calculation cycle [¢,_;,2,] is calculated by the formula:

6, =6, +a(6,x6,)+ p6; x(8, 6,). (1)
. . e _ _ | Gatl3AT g+ 2/3AT
where 0, =(6,,,0,2,6,3), quasi-coordinates 8, =  [ao(t)dt, 0, =  [o(t)dt,
Lyt In141/3a7
~ t,_+AT
0,,3 = [ @(t)dt are formed within the calculation cycle at the points of removal
t,_1+2/3AT

of primary information ¢, | +1/3AT, ¢, 1 +2/3AT, t, | + AT , AT — calculation
cycle time. Miller obtained that & =33/80, £ =57/80. In the optimized Ignagni
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[2] for the conical movement of the Miller algorithm, the values of the coefficients
were specified: o =36/80, f=54/80. The basis of the optimization will be the
estimate of the error of the accumulated computational drift:

56, = 2arctg(|vect(A,|)/ sqal(SA,)) ,

where A, is the quaternion of the accumulated orientation error JA, = A*n 07\n ,

A, = N(t,) is the quaternion calculated by the orientation algorithm at the moment

t,, A, —is the quaternion conjugated to the orientation quaternion of the four-

n- n

frequency model. To obtain the calculated quaternion of the orientation A; , We use

the formula for the addition of turns A} =A,,_;o AA*;, , where the quaternion
AA*n calculated by the algorithm in the cycle of calculations [¢,_;,2,]:

A2, =1-(1/8)0% +(1/384)0 , A =(1/2)6,,(1-62/24), i=123,
where 6,; are the components of the orientation vector, 6’,% = 931 + 6’,%2 + 933 .

Modeling the test movement and evaluating the Miller algorithm will be
carried out according to the block diagram shown in Fig. 2.
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Fig. 2 — block diagram of modeling

The first stage of optimization. In Miller's classical algorithm (1) and in
Ignagni's modification, the sum of the coefficients is « + £ =1.125. Let's analyze
the accuracy of Miller's algorithm and Ignagni's modification on the proposed four-
frequency model, changing the sum of the coefficients « + fin the range from
1.125 to 1.128. Let's set the calculation cycle AT =0.1s. The results of the
numerical experiment are presented in Table 1. It was found that the minimum
estimate of the drift error is observed not for a + f#=1.125, as is the case for the
classic Miller algorithm and Ignagni's modification, but for o + f=1.127 .

The second stage of optimization. Let's now fix the sum of the coefficients
in the algorithm « + 8 =1.127 and specify the coefficients & and £ . To do this, we
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will change the coefficient « in the range from 0.8 to 1.2. The results of calculations
of the error estimate of the accumulated drift by the modified Miller algorithm are
presented in Table 2.

Table 1
The error of the Miller algorithm on the four-frequency model
a+p Miller's algorithm, Ignagni
drift (rad) modification,
drift (rad)
1.1250 0.000556 0.000561
1.1260 0.000239 0.000244
1.1265 8.14E-05 8.59E-05
1.1270 7.84E-05 7.39E-05
1.1275 0.000236 0.000232
1.1280 0.000395 0.00039
Table 2
Accumulated computational drift error
a Modified Miller algorithm,
drift (rad)
0.80 3.21E-05
0.85 2.64E-05
0.90 2.09E-05
1.00 1.21E-05
1.04 1.06E-05
1.05 1.06E-05
1.06 1.07E-05

As a result of numerical optimization, it was found that the minimum error
value of the accumulated computational drift occurs at the values of the coefficients
in the Miller algorithm o =1.05, £ =0.077 . At the same time, this error (1.06E-05
rad) is significantly smaller than the corresponding errors of the classic Miller
algorithm (7.84E-05 rad) and the Ignagni modification (7.39E-05 rad).

Conclusions

A new analytical test motion of a rigid body based on a four-frequency
kinematic model is presented. Software-numerical optimization of the coefficients of
the Miller algorithm on this test motion is carried out, which ensures a minimum
error of the accumulated computational drift.
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